
Deep Nets Don’t Learn via Memorization

What is memorization? 
Behaviour on random noise is a useful 
operational definition of memorization. 

Deep nets can achieve 0 training error 
on datasets of random noise; does 
this mean their learning strategy is to 
memorize everything? 
We perform a thorough empirical 
investigation of behaviour on real vs. 
noise data, and show this is not the case.

We show that for deep nets:
1. Fitting noise requires more effective 

capacity
2. Training on noise gets harder, faster, 

when the dataset grows
3. On real data, some examples are 

always/never fit immediately, and 
some examples have more/less impact 
on training (not so for noise)

4. Simple patterns are learned first., 
before memorizing

5. Regularization can effectively reduce 
memorization
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Related work & Conclusions

Zhang et al. [1] raise questions about memorization and generalization in 
deep networks. We address these questions by providing insight on 
learning behaviour of deep nets. Comparing our work with [1]:

Goodfellow et al. [2] explain that a model’s representational capacity 
(~#parameters) is limited by  (1) learning algorithm and  (2) regularization, 
to become the effective capacity, and suggest learning_rate*#iterations 
as a measure. They note understanding effective capacity is difficult 
without understanding non-convex optimization. 

We demonstrate that the data distribution is also an important 
consideration, which our proposed of critical sample ratio depends on.  
Understanding generalization requires thinking about how data, learning, 
and regularization affect capacity,  and each other. 

Our work Zhang et al. [1]

● Focuses on differences in learning noise/data

● Conclude DNNs don’t just memorize real data 

● Training time is more sensitive to capacity and 
#examples on noise 

● Regularization can target memorization

● Focuses on similarities

● Suggests DNNs might use memorization 

● Training time increases by a constant factor 
on noise

● Regularization doesn’t explain generalization
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Fig. 3.1   Average (100 experiments) 
misclassification rate for each of 1000 
examples after one epoch of training, for real 
data  (cifar10, blue), random noise ‘images’ 
(randX, green) and random labels (randY, red). 
Easiness of examples (i.e. probability of being 
correctly classified after 1 epoch of training) 
varies much more for real data.

Fig. 3.2   Gini coefficient (a measure of roughness/disparity over categories) of the 
average loss-sensitivity over the course of training, on a 1000-example real dataset 
(14x14 MNIST) (blue) versus noise data (red) and 50% noise (green). On the left, 
the target is the normal class label; on the right, there are as many classes as 
examples. Disparity (of loss-sensitivity, between different examples, over the 
course of training) is higher for real data in both cases.
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Fig. 3.3  Per-class loss-sensitivity;, a cell i,j represents the average loss-sensitivity of 
examples of class i w.r.t. training examples of class j. Left is real data, right is 
random data. Loss-sensitivity is more highly class-correlated for real data.

We compute loss-sensitivity as the partial derivative of the 
loss L wrt example x , averaged over training iterations t.

Fig. 1   Performance as a function of 
capacity for different levels of noise in 
2-layer MLPs (real data = blue). Random 
inputs (left) is percentage of examples 
replaced with noise, (right) is random 
labels).  For real data, performance is 
already very close to maximal with 4096 
hidden units, but as noise is increased, 
higher capacity is needed to achieve 
maximal performance.  

Fig. 2   Change in normalized time to convergence as a 
function of dataset size, with capacity fixed at 4096 
units. Because there are patterns underlying real data, 
increasing dataset size doesn’t increase training time for 
real data as much as it does for noise.

Fig. 4.1   Critical sample ratio for 
randomly chosen examples over 
the course of training on 
CIFAR-10, for noise input (randX, 
red) and noise labels (randY, 
green), and real data (blue). As 
measured by critical sample 
ratio, function complexity 
increases very rapidly for noise 
data (red), increases eventually, 
to almost the same level, for 
noise labels (green).

We define a  critical sample  as an example which has a nearby 
adversarial (differently classified) example. The ratio of critical 
samples is the proportion of examples for which a critical 
sample is found in radius r. This gives an idea of the number of 
decision boundaries in the function a network computes; i.e. 
how complicated that function is.

Fig. 5.1   Best validation performance on 
real data vs. training performance on 
noise labels for the same model, for 
different regularizers. Flatter curves 
indicate that memorization (as indicated 
by noise performance) can be capped 
without sacrificing generalization (on real 
data).

Fig.5.2   Training accuracy over 
time (epochs), on noise labels 
(left) and real labels (right) data. 
Regularization can slow down 
memorization behaviour. 

Fig. 4.2   Accuracy (left in each pair, solid is train, dotted is validation) 
and Critical sample ratios (right in each pair) for MNIST (top row) and 
CIFAR-10 (bottom row) for different types of noise (inputs: left 
columns, labels: right columns), for different amounts of noise (real 
data is yellow, increasing noise is red). Critical samples provide a good 
basis for assessing generalization across tasks and data types.
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